15N metabolic labeling as a tool to study nutrient induced signaling processes in plants

Waltraud Schulze Max-Planck Institut für molekulare Pflanzenphysiologie, Golm

Schulze WX Usadel B (2010) Annual Reviews of Plant Biology 61: 491-516

Schulze WX, Usadel B (2010) Annual Review of Plant Biology 61: 491-516

Mass-shifts of ¹⁵N-labeled peptides

- Mass shift is dependent on the amino acid sequence.
- Identification of the peptide is necessary before the peptide pairs of labeled and unlabeled form can be quantified.

¹⁵N-labeling: The basics

Kierszniowska S, et al (2009) Proteomics 9: 1916-1924

Reciprocal experimental setup: Data analysis

Dynamic changes in plasma membrane microdomain composition

Membrane microdomains and signaling

Artificial membrane vesicle with distinct sterol-rich domains

Baumgart T, et al. (2003) Nature 425: 821-824

Evidence from mammalian cells and yeast:

- Membrane microdomain composition can change with environmental stimuli and with protein modification
- Only indirect indications in plants

Enrichment of receptor FLS2 in DRM

Cells were stimulated with flg22 for 10 min and DRMs were prepared

Foster LJ et al. (2003) Proceedings of the National Academy of Sciences of the USA 100: 5813-5816

Foster LJ et al. (2003) Proceedings of the National Academy of Sciences of the USA 100: 5813-5816

Mßcd removes sterols from DRM

- Sitosterol and campesterol are the most abundant sterols in plant DRM.
- Major sterol are removed from DRM preparations by mßcd.

Definition of plant Lipid Rafts

Constant and variable components of DRM

- Cell wall proteis, lipid \triangleright modifying proteins and proteins with functions in vesicle trafficking are reproducibly found as sterol-dependent proteins.
- Signaling proteins display are stronger experiment-toexperiment variation and stonger variation between proteins.
- Indications for 'constant' and 'variable' components of sterol-rich membrane domains.

Kierszniowska S, et al (2009) Molecular and Cellular Proteomics 8(4): 612-623

Dynamic changes in protein phosphorylation

Membrane proteins and phosphorylation

Experimental setup: nutrient starvation and resupply 5 min 10 min starved 3 min 30 min 14N 15N LC-MS/MS Flip Digest).01% Trypsin Brij58 Plasma membranes Brij 58 treated vesicles 381.89 right side out inside-out Seedling liquid culture analysis by LC-MS/MS with neutral loss scans / MSA

display of relative changes in phosphorylation label-free quantitation – protein correlation profiling

> Johansson F, et al. (1995) Plant Journal 7: 165-173 Stensballe A, et al. (2001) Proteomics 1: 207-222 Palmgren M, et. al. (1990) Biochem Biophys Acta 1021: 133-140 Nühse T, et al. (2003) Molecular and Cellular Proteomics 2 (11): 1234-1243

Nutrient-responsive phosphorylation sites

Phosphorylation responses: Verification

Verification:

 Changes in phosphorylation of H+-ATPase AHA1 and AHA2 correspond to changes in ATPase activity upon succorse resupply after starvation.

Nutrient-dependent response classes

Engelsberger WR, et al. (2010), submitted

Protein functions represented in response classes

GPI-anchored plasma membrane

glycolysis & metabolism hormone metabolism

Late responses (after 5 min) involve protein degradation and synthesis, second messenger signaling and metabolism.